Extremals for the Sobolev inequality on the quaternionic Heisenberg group and the quaternionic contact Yamabe problem

Stefan Ivanov

University of Sofia "St. Kliment Ohridski" Faculty of Mathematics and Informatics 5, James Baucher Blvd., 1164 Sofia Bulgaria

ivanovsp@fmi.uni-sofia.bg

Abstract:

We describe explicitly non-negative extremals for the Sobolev inequality on the seven dimensional quaternionic Hesenberg group and determine the best constant in the L^2 Folland-Stein embedding theorem involving quaternionic contact geometry and the quaternionic contact Yamabe equation. Translating the problem to the 3-sasakian sphere, we determine the quaternionic contact Yamabe invariant on the seven sphere. The main tool is the Biquard connection. We show that the torsion of the Biquard connection is an obstruction quaternionic contact structure to be locally isomorphic to a 3-Sasakian one. We define a curvature-type tensor invariant called quaternionic contact (qc) conformal curvature in terms of the curvature and torsion of the Biquard connection. We show that a quaternionic contact manifold is locally qc conformal (gauge equivalent) to the standard flat quaternionic contact structure on the quaternionic Heisenberg group, or equivalently, to the standard 3-sasakian structure on the sphere if and only if the qc conformal curvature vanishes. It seems that this tensor could help to prove that the quaternionic contact Yamabe invariant is less or equal to that of the sphere whenever the gc conformal curvature is different or equal to zero, respectively. This reduces the qc Yamabe problem to that of the spherical qc manifolds.