Programa de Pós-graduação em Matemática Aplicada Exame de Qualificação de Álgebra Linear Aplicada 14/12/2009

- 1. (1,5) Sejam $u, v \in \mathbb{R}^n$ tal que $u^T v \neq 0$. Pede-se:
 - (a) Obtenha todos os autovalores e autovetores de $A = I + uv^T$.
 - (b) Calcule det(A).
- 2. (1,5) Seja $A \in \mathbb{R}^{n \times n}$ uma matriz não singular. Mostre que se A tem uma decomposição LU, então a decomposição é única.
- 3. (2,0) Seja $A \in \mathbb{R}^{m \times n}$ uma matriz de posto n. Mostre que $||A(A^TA)^{-1}A^T||_2 = 1$, sendo $||B||_2 = \sup_{\|x\|_2 = 1} ||Bx||_2$.
- 4. (2,0) Seja $\|\cdot\|$ uma norma tal que $\|Ax\| \le \|A\| \|x\|$ para todo $A \in \mathbb{R}^{n \times n}$ e $x \in \mathbb{R}^n$. Mostre que:
 - (a) O raio espectral $\rho(A) \leq (\|A^k\|)^{1/k}$.
 - (b) Se $\lim_{k\to\infty} A^k = 0$, então $\rho(A) < 1$.
- 5. (1,5) Seja $v \in \mathbb{R}^n$, $v \neq 0$. Considere a transformação de Householder $P = I \frac{2}{v^T v} v v^T$. Mostre que P é inversível.
- 6. (1,5) Considere a seguinte decomposição QR de uma matriz A:

$$Q = \begin{pmatrix} 0 & 0 & 1\\ 1/2 & 1/2 & 0\\ 1/2 & -1/2 & 0\\ 1/2 & 1/2 & 0\\ 1/2 & -1/2 & 0 \end{pmatrix} \qquad R = \begin{pmatrix} 2 & 1 & 0\\ 0 & 2 & 1\\ 0 & 0 & 1 \end{pmatrix}.$$

Resolva por quadrados mínimos o sistema Ax = b onde b(i) = 1 para $1 \le i \le 5$.