PPGMA

Exame de qualificação de Otimização - 16/03/2016

Instruções:

- Resolva as 5 questões abaixo (2,0 pontos cada).
- As soluções devem conter o desenvolvimento e/ou justificativas.

Questões:

- 1. Considere $f: \mathbb{R}^n \to \mathbb{R}$ uma função diferenciável no ponto $x^* \in \mathbb{R}^n$.
 - (a) Prove que se x^* é um minimizador local de f, então $\nabla f(x^*) = 0$;
 - (b) Prove que se x^* é um minimizador local de f e, adicionalmente, f é duas vezes diferenciável em x^* , então $\nabla^2 f(x^*)$ é semi-definida positiva.
- 2. Considere $f: \mathbb{R}^n \to \mathbb{R}$ uma função de classe \mathcal{C}^1 com gradiente Lipschitz com constante L > 0. Consequentemente, para todos $x, y \in \mathbb{R}^n$,

$$|f(y) - f(x) - \nabla f(x)^{T} (y - x)| \le \frac{L}{2} ||y - x||^{2}.$$

Suponha que f é limitada inferiormente. Seja $(x^k) \subset \mathbb{R}^n$ uma sequência gerada pelo método de Cauchy com passo constante $t_k = \frac{1}{L}$.

(a) Prove que, para todo $k \in \mathbb{N}$,

$$f(x^k) - f(x^{k+1}) \ge \frac{1}{2L} \|\nabla f(x^k)\|^2;$$

- (b) Conclua que $\lim_{k\to\infty} \|\nabla f(x^k)\| = 0$.
- 3. Sejam $F: \mathbb{R}^n \to \mathbb{R}^n$ uma função de classe \mathcal{C}^1 e $f: \mathbb{R}^n \to \mathbb{R}$, de classe \mathcal{C}^2 . Considere $\bar{x} \in \mathbb{R}^n$ em que a Jacobiana de F é não singular e a Hessiana de f é definida positiva. Pede-se:
 - (a) Considere o problema de resolver o sistema F(x) = 0. Deduza a expressão para o passo de Newton \bar{d} a partir de \bar{x} . Apresente a interpretação geométrica no caso n = 1;
 - (b) Obtenha a expressão do passo de Newton \bar{d} , calculado no item (a) no caso particular em que $F = \nabla f$;
 - (c) Conclua que o passo obtido no item anterior pode ser obtido minimizando em d a aproximação de segunda ordem de $f(\bar{x}+d)$.

4. Considere $f: \mathbb{R}^n \to \mathbb{R}$ definida por

$$f(x) = \frac{1}{2}x^T A x + b^T x + c,$$

onde $A \in \mathbb{R}^{n \times n}$ é definida positiva, $b \in \mathbb{R}^n$ e $c \in \mathbb{R}$. Seja $x^* \in \mathbb{R}^n$ o minimizador de f. Considere $\{d^0, d^1, \dots, d^{n-1}\} \subset \mathbb{R}^n \setminus \{0\}$ um conjunto de vetores A-conjugados. Dado $x^0 \in \mathbb{R}^n$, defina para $k = 0, 1, \dots, n-1$,

$$x^{k+1} = x^k + t_k d^k,$$

onde
$$t_k = -\frac{\nabla f(x^k)^T d^k}{(d^k)^T A d^k}$$
.

- (a) Prove que $x^n = x^*$;
- (b) Considere $d^0 = -\nabla f(x^0)$ e $d^{k+1} = -\nabla f(x^{k+1}) + \beta_k d^k$. Calcule β_k de modo que as direções d^k e d^{k+1} sejam A-conjugadas.
- 5. Sejam $A \in \mathbb{R}^{m \times n}$ uma matriz de posto m e $b \in \mathbb{R}^m$. Considere o problema de obter a projeção de um ponto $z \in \mathbb{R}^n$ sobre o conjunto

$$L = \{ x \in \mathbb{R}^n \mid Ax + b = 0 \}.$$

- (a) Formule este problema como um problema de otimização com restrições;
- (b) Justifique que este problema tem solução única;
- (c) Escreva as condições de KKT para este problema e use-as para obter uma fórmula explícita para a solução, dada por

$$\text{proj}_{L}(z) = z - A^{T}(AA^{T})^{-1}(Az + b).$$

BOA PROVA