Universidade Federal do Paraná Departamento de Matemática Programa de Pós-Graduação em Matemática

Exame de qualificação de Álgebra e Módulos

- Aluno:
- Data: 30/07/2018
- Banca examinadora:
 - 1. Heily Wagner
 - 2. Edson Ribeiro Alvares
 - 3. Marcelo Muniz
- Instruções:
 - 1. A prova tem uma duração de 3 horas;
 - 2. Justifique todas as suas respostas;
 - 3. Entregue a(s) folha(s) de questões junto com as soluções.
 - 4. Salvo menção em contrário, nesta prova k denotará um anel comutativo e A denotará uma k-álgebra; $M = M_A$ indica que M é A-módulo à direita, $M = {}_AM$ indica que M é A-módulo à esquerda e $M = {}_AM_B$ indica que M é (A, B)-bimódulo.

Questões:

1. (25 pontos) Seja R a \mathbb{Z} -álgebra de polinômios $R = \mathbb{Z}[x]$ e considere a estrutura de R-módulo à esquerda em \mathbb{Z} dada por $f(x) \cdot n = f(0)n$. Considere a sequência de R-módulos à esquerda e morfismos de R-módulos

$$0 \longrightarrow R \xrightarrow{\alpha} R \xrightarrow{\beta} \mathbb{Z} \longrightarrow 0$$

em que $\alpha(f(x)) = xf(x)$ e $\beta(g(x)) = g(0)$.

- (a) Mostre que esta é uma sequência exata de R-módulos e também de \mathbb{Z} -módulos.
- (b) A sequência cinde como sequência exata de Z-módulos, ou seja, de grupos abelianos?
- (c) A sequência cinde como sequência exata de R-módulos?
- (d) O R-módulo \mathbb{Z} é projetivo?.
- 2. (25 pontos) Seja p um número primo, $f: \mathbb{Z} \to \mathbb{Z}_p$ $(f: x \mapsto [x]_p)$ e $g: \mathbb{Z}_{p^2} \to \mathbb{Z}_p$ $(g: [x]_{p^2} \mapsto [x]_p)$ as sobrejeções canônicas. Mostre que o pullback do par f e g é isomorfo a $\mathbb{Z} \oplus \mathbb{Z}_p$. (Dica: Mostre primeiro que $\operatorname{Ker} g = p\mathbb{Z}_{p^2} \cong \mathbb{Z}_p$)
- 3. (25 pontos) Sejam A, B duas k-álgebras e seja M um (A,B)-bimódulo tal que M_B é um B-módulo projetivo.
 - (a) Mostre que se P_A é um A-módulo projetivo então $P \otimes_A M$ é um B-módulo projetivo.
 - (b) Se $\varphi \colon A \to B$ é um morfismo de álgebras, há uma estrutura natural de (A,B)-bimódulo em B dada por $a \cdot x \cdot b = \varphi(a)xb$ para $a \in A$ e $x,b \in B$. Mostre que o funtor (de extensão de escalares) que leva N_A em $N \otimes_A B$ preserva projetivos.

- (c) Seja I um ideal bilateral de A. Mostre que existe um isomorfismo de A/I-módulos à direita $M \otimes_A A/I \cong M/MI$.
- (d) Conclua que se I é um ideal (bilateral) de A e M_A é um A-módulo projetivo então M/MI é um A/I-módulo projetivo.
- 4. (25 pontos) Uma álgebra A é **auto-injetiva à direita** se A_A é um A-módulo injetivo. Um exemplo de tal algebra é kG quando G é um grupo finito.
 - (a) Mostre que A é auto-injetiva à direita se e somente se todo A-módulo à direita projetivo e finitamente gerado é injetivo.
 - (b) Mostre que se B é uma álgebra Morita equivalente a uma álgebra A que é auto-injetiva à direita então B também é auto-injetiva à direita.