Universidade Federal do Paraná Departamento de Matemática Programa de Pós-Graduação em Matemática

Exame de qualificação de Análise em \mathbb{R}^n

- Data e horário: 28/08/2020 14h00mim
- Banca examinadora:
 - 1. Ademir Alves Ribeiro
 - 2. Fernando de Ávila Silva
 - 3. Cleber de Medeira

• Instruções:

- 1. A prova tem uma duração de 03h45min e vale 100 pontos;
- 2. Justifique todas as suas respostas;
- 3. As questões estão propostas em 3 grupos. Deverão ser resolvidas exatamente 5 questões, sendo pelo menos uma questão de cada grupo;
- 4. Deverá ser enviado um único arquivo com as resoluções das questões escolhidas, na mesma ordem em que estão propostas. O arquivo deve ser em formato pdf, nomeado como Qualificacao_Analise_Nome.pdf;
- 5. A resolução da prova deverá ser enviada para os seguintes e-mails: ademir.ribeiro@ufpr.br fernando.avila@ufpr.br clebermedeira@ufpr.br

Questões do Grupo 1:

- (1a) (20 pontos) Considere $\langle \cdot, \cdot \rangle$ um produto interno arbitrário em \mathbb{R}^n e $\| \cdot \|$ a norma induzida por este produto interno. Sejam $K, F \subset \mathbb{R}^n$ conjuntos convexos, com K compacto e F fechado. Mostre que se $K \cap F = \emptyset$, então existem $u \in \mathbb{R}^n$ unitário e $\alpha < \beta \in \mathbb{R}$ tais que a faixa $S = \{x \in \mathbb{R}^n \mid \alpha \leq \langle u, x \rangle \leq \beta\}$ separa os conjuntos K e F, isto é, $\langle u, x \rangle \leq \alpha$ para todo $x \in K$ e $\langle u, x \rangle \geq \beta$ para todo $x \in F$.
- (1b) (20 pontos) Seja $f: \mathbb{R}^n \to \mathbb{R}^m$ contínua. Mostre que $\lim_{\|x\| \to \infty} \|f(x)\| = \infty$ se, e somente se, $f^{-1}(K)$ é compacto para todo conjunto compacto $K \subset \mathbb{R}^m$. Mostre que uma função satisfazendo estas condições é uma aplicação fechada.

- (1c) (20 pontos) Sejam $B = \{x \in \mathbb{R}^n \mid ||x|| \le 1\}$ e $a \in \text{int}(B) \{0\}$. Considere $f : \mathbb{R}^n \to \mathbb{R}^n$ definida por f(x) = (1 ||x||)a + x.
 - (i) Mostre que f é injetiva, que $f(B) \subset B$ e que $f(\mathbb{R}^n B) \subset \mathbb{R}^n B$.
 - (ii) Dado $y \in \mathbb{R}^n \{a\}$, mostre que existe $\gamma > 0$ tal que

$$\|(1 - \gamma)a + \gamma y\| = 1. \tag{1}$$

Definindo $x = \left(\frac{1}{\gamma} - 1\right)a + y$, mostre que f(x) = y e que γ satisfazendo (1) é único.

(iii) Mostre que f é um homeomorfismo.

Questões do Grupo 2:

- (2a) (20 pontos) Seja $f: \mathbb{R}^n \to \mathbb{R}^n$ diferenciável e suponha que para algum $b \in \mathbb{R}^n$ o conjunto $f^{-1}(b)$ possui um ponto de acumulação $a \in \mathbb{R}^n$. Mostre que $f'(a): \mathbb{R}^n \to \mathbb{R}^n$ não é sobrejetiva. Apresente exemplo de uma bijeção $f: \mathbb{R}^2 \to \mathbb{R}^2$, de classe \mathcal{C}^{∞} , tal que f'(x) tem posto 1 para uma infinidade não enumerável de pontos.
- (2b) (20 pontos) Seja $f: \mathbb{R}^n \to \mathbb{R}^m$ diferenciável no ponto $a \in \mathbb{R}^n$.
 - (i) Mostre que existem $\delta, M > 0$ tais que $||f(x) f(a)|| \le M||x a||$ para todo $x \in B(a, \delta)$.
 - (ii) Existem $\delta, M > 0$ tais que $||f(x) f(y)|| \le M||x y||$ para todos $x, y \in B(a, \delta)$?
- (2c) (20 pontos) Considere $\|\cdot\|$ a norma Euclidiana em \mathbb{R}^3 , escalares a>b>c>0 e o elipsóide $E=\left\{x\in\mathbb{R}^3\mid \frac{x_1^2}{a^2}+\frac{x_2^2}{b^2}+\frac{x_3^2}{c^2}=1\right\}$.
 - (i) Justifique a existência, sem calcular ainda, de um ponto $x^* \in E$ mais próximo da origem do que todos os outros pontos de E e de $\tilde{x} \in E$ mais distante da origem do que todos os outros pontos de E.
 - (ii) Definindo $f, h : \mathbb{R}^3 \to \mathbb{R}$ por $f(x) = ||x||^2$ e $h(x) = \frac{x_1^2}{a^2} + \frac{x_2^2}{b^2} + \frac{x_3^2}{c^2} 1$, justifique a existência de $\lambda^*, \tilde{\lambda} \in \mathbb{R}$ tais que (x^*, λ^*) e $(\tilde{x}, \tilde{\lambda})$ são soluções do sistema

$$\begin{cases} \nabla f(x) = \lambda \nabla h(x) \\ h(x) = 0, \end{cases}$$
 (2)

que tem 4 equações e 4 incógnitas.

(iii) Encontre todas as soluções do sistema (2) e classifique cada uma, dizendo se é minimizador (local/global) ou maximizador (local/global) da função f restrita ao elipsóide E, ou ainda se tal solução não é nem minimizador nem maximizador.

Questões do Grupo 3:

- (3a) (20 pontos) Considere escalares $a_i, b_i \in \mathbb{R}$ tais que $a_i < b_i$ para cada i = 1, ..., n, o bloco $A = [a_1, b_1] \times \cdots \times [a_n, b_n] \subset \mathbb{R}^n$ e uma função limitada $f : A \to \mathbb{R}$. Denote o gráfico de f por $G = \{(x, y) \in \mathbb{R}^{n+1} \mid x \in A, y = f(x)\}$.
 - (i) Mostre que se f é integrável, então vol(G) = 0.
 - (ii) Apresente uma função $f:[0,1] \to [0,1]$, limitada e não integrável, cujo gráfico tem volume zero.
- (3b) (20 pontos) Considere escalares $a_i, b_i \in \mathbb{R}$ tais que $a_i < b_i$ para cada i = 1, ..., n, o bloco $A = [a_1, b_1] \times \cdots \times [a_n, b_n] \subset \mathbb{R}^n$ e uma função limitada $f : A \to \mathbb{R}$. Denote por $\omega(x)$ a oscilação de f no ponto $x \in A$ e $E_{\gamma} = \{x \in A \mid \omega(x) \geq \gamma\}$.
 - (i) Mostre que para todo $\gamma > 0$, o conjunto E_{γ} é compacto.
 - (ii) Mostre que f é integrável se, e somente se, $vol(E_{\gamma}) = 0$ para todo $\gamma > 0$.

Boa Prova