Universidade Federal do Paraná Departamento de Matemática Programa de Pós-Graduação em Matemática

Exame de qualificação de Análise em \mathbb{R}^n

- Data e horário: 12/03/2021 14h00mim
- Banca examinadora:
 - 1. Ademir Alves Ribeiro
 - 2. Fernando de Ávila Silva
 - 3. Cleber de Medeira

• Instruções:

- 1. A prova tem uma duração total de 03h45min (incluindo o tempo de digitalização e envio) e vale 100 pontos;
- 2. Justifique todas as suas respostas;
- 3. Deverão ser escolhidas e resolvidas exatamente 5 questões;
- 4. Deverá ser enviado um único arquivo com as resoluções das questões escolhidas, na mesma ordem em que estão propostas. O arquivo deve ser em formato pdf, nomeado como qualif_analise_Nome.pdf;
- 5. A resolução da prova deverá ser enviada para os seguintes e-mails: ademir.ribeiro@ufpr.br fernando.avila@ufpr.br clebermedeira@ufpr.br

Questões:

- 1. (20 pontos) Considere $X = \{x \in \mathbb{R}^4 \mid x_1 x_2 x_3 + x_2 x_3 x_4 \neq 0\}$. Mostre que $\overline{X} = \mathbb{R}^4$.
- 2. (20 pontos) Considere os conjuntos

$$A = \{(x, y) \in \mathbb{R}^2 \mid 0 < x \le 1\}$$
 e $B = \{(x, y) \in \mathbb{R}^2 \mid x \ge 1\}.$

Mostre que não existe um homeomorfismo $f: \mathbb{R}^2 \to \mathbb{R}^2$ tal que f(A) = B, mas que os conjuntos $A \in B$ são homeomorfos.

- 3. (20 pontos) Considere constantes $a, b \in \mathbb{R}$, com a > 0. Mostre que a função $f : \mathbb{R}^2 \to \mathbb{R}$ dada por $f(x_1, x_2) = ax_1^4 + bx_2 + e^{x_1^2 + x_2^2}$ tem um único ponto crítico e que este ponto é minimizador global de f.
- 4. (20 pontos) Considere uma constante $\gamma \in (0,1)$ e suponha que $f: \mathbb{R}^n \to \mathbb{R}$ seja uma função diferenciável tal que $f(\gamma x) = \gamma f(x)$ para todo $x \neq 0$.
 - (a) Mostre que f(0) = 0;
 - (b) Mostre que f é linear;
 - (c) Use o que foi provado neste exercício para mostrar que a função $f: \mathbb{R}^2 \to \mathbb{R}$ dada por $f(x_1, x_2) = \begin{cases} \frac{x_1^3}{x_1^2 + x_2^2}, \text{se } (x_1, x_2) \neq (0, 0) \\ 0, \text{se } (x_1, x_2) = (0, 0) \end{cases}$ não é diferenciável na origem.
- 5. (20 pontos) Seja $a \in U$ um ponto crítico de uma função $f: U \to \mathbb{R}$, de classe C^2 no aberto $U \subset \mathbb{R}^n$. Suponha que a matriz hessiana de f seja invertível no ponto a. Mostre que existe um aberto V, com $a \in V \subset U$, no qual não há outros pontos críticos de f.
- 6. (20 pontos) Sejam $f, g : [0, 1] \to \mathbb{R}$ duas funções não-negativas e não-decrescentes. Mostre que a função $h : [0, 1] \times [0, 1] \to \mathbb{R}$, definida por h(x, y) = f(x)g(y) é integrável.

Boa Prova